
Building High Throughput Permissioned
Blockchain Fabrics: Challenges and Opportunities

Suyash Gupta Sajjad RahnamaJelle Hellings Mohammad Sadoghi

Exploratory Systems Lab

University of California Davis

2

At the core of any Blockchain application is a

Byzantine Fault-Tolerant (BFT) consensus protocol.

Order Txn

OK OK

OK

Practical Byzantine Fault-Tolerance (PBFT)
[OSDI’99]

• First practical Byzantine Fault-Tolerant Protocol.

• Tolerates up to f failures in a system of 3f+1 replicas

• Requires three phases of which two necessitate quadratic communication complexity.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.

3

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare
O(n)

Prepare
O(n2)

Commit
O(n2)

ReplyClient
Request

4

PBFT Civil Executions

Execute

PBFT Uncivil Execution: Primary Failure

(View Change)

Replica 1

Replica 2

Byzantine Primary

New Primary

View Change Message New View Message Enter New View

5

Got VC message

from Majority?

Speculative Byzantine Fault Tolerance (Zyzzyva)
[SOSP’07]

• Speculation to achieve consensus in a single phase.

• Under no failures, it only requires linear communication complexity.

• Requires good clients, for ensuring same order across the replicas.

• Clients need matching responses from all the 3f+1 replicas.

• Just one crash failure is sufficient to severely impact throughput.

• Recently, proven unsafe!

6

Zyzzyva Civil Executions

Client

Replica 1

Replica 2

Replica 3

Primary

T

ReplyClient
Request

Pre-prepare

Speculative Execution

Client needs
3f+1 responses

7

Zyzzyva under Failure of one Non-Primary Replica

Client

Replica 1

Replica 2

Byzantine Replica

Primary

T

Pre-prepare Reply Commit
Certificate

Certificate
Reply

Client
Request

Client
Timeouts

8
On client timeout → switches to slow-path.

SBFT: A Scalable and Decentralized Trust Infrastructure
[DSN’19]

• A safe alternate to Zyzzyva.

• Employs threshold signatures to linearize consensus → Splits each O(n2) phase of

PBFT into two linear phases.

• Requires twin-paths→ fast-path and slow-path.

• Introduces notion of collectors and executors.

9

SBFT Civil Execution

Replica

Collector

Executor

Primary

Pre-prepare Sign-share Commit-Proof Execute-Proof

10

Client Request Sign-state

Either no failures or c+1 crash failures for c > 0 collectors if n = 3f+2c+1

Client

Hotstuff: BFT Consensus in the Lens of Blockchain
[PODC’19]

• Splits each O(n2) phase of PBFT into two linear phases.

• Advocates leaderless consensus → Frequent primary replacement.

• Employs threshold signatures to linearize consensus → enforces sequential processing.

• Two versions:

• Basic Hotstuff: Primary switched at the end of each consensus.

• Chained Hotstuff: Employs pipelining to ensure each phase run by a distinct primary.

11

Hotstuff Protocol

Replica 1

Replica 2

Byzantine
Replica

Primary

ProposalView
change

Prepare
vote

Pre-commit
Message

Pre-commit
Vote

Commit
Message

Commit
Vote

Decide

Prepare
Phase

Pre-Commit
Phase

Commit
Phase

12

13

1) System consisting of n >> 3f+1.

➢ Q/U [SOSP’05] expects 5f+1 replicas.

2) Use of trusted components to prevent primary equivocation.

➢AHL [SIGMOD’19]

Other Proposed Byzantine-Fault Tolerant Designs

Novel Byzantine Fault-Tolerant Protocols

Speculative Execution

15

Proof-of-Execution (PoE)

Out-of-Order Message Processing

Three-phase Linear protocol

No dependence on clients or trusted component.

No reliance on a twin-path design.

PoE vs Other Protocols

16

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare Prepare Certify ReplyClient
Request

17

Proof-of-Execution (PoE)

n = 4 replicas and f <= 1

Execute

PoE View Change Protocol

Replica 1

Replica 2

Byzantine Primary

New Primary

View Change Request Join after Receiving
f+1 VC requests

New View
Propose

Enter
New View

18

PoE Scalability under Single Failure

19

Resilient Concurrency Control (RCC) Paradigm

20

Democracy→ Give all the replicas the power to be the primary.

Parallelism → Run multiple parallel instances of a BFT protocol.

Decentralization →Always there will be a set of ordered client requests.

RCC Defense

Why should BFT protocols rely on just one primary replica?

Malicious primary can throttle the system throughput.

Malicious primary requires replacemenat→ fall in throughput.

21

Resilient Concurrency Control Paradigm

22

BFT protocol

Number of

Instances (z)

Parallelism Ordering Execution

Run z parallel BFT

instances.

Create a global order

of all the requests.

Execute the requests

in a global order.

RCC can employ several BFT protocols: PBFT, Zyzzyva, SBFT and PoE.

Client

Replica

Byzantine
Replica

Primary
Replica

T

Pre-Prepare Prepare Commit ReplyRequest

T

1

2

1

2

1

2

1

2

Client

Primary
Replica

RCC using PBFT with 2 parallel instances on each replica
23

Colluding Primaries

Multiple malicious primaries can prevent liveness!

Solution → Optimistic Recovery through State Exchange.

24

Good Replicas

|A| = f
Good Replicas

|B| = f

Good Replica

|C| = 1

Other f-2

Malicious Replicas

P1 P2
|M| = f

m1 m2

25

Scalability

Single Failure Experiments

26x

Global Scale Resilient Blockchain Fabric

• Traditional BFT protocols do not scale to geographically large distances.

• Blockchain requires decentralization → replicas can be far apart → expensive

communication!

• The underlying BFT consensus protocol should be topology-aware.

26

Proceedings of the VLDB Endowment 2020.

Vision Geo-Scale Byzantine Fault-Tolerance

27

Each cluster runs PBFT to
select, locally replicate, and

certify a client request.

Primary at each cluster
shares the certified client

request with other clusters.

GeoBFT Protocol

Local Replication Inter-cluster Sharing Ordering and Execution

Order the certified
requests, execute them,
and inform local clients.

GeoBFT is a topology-aware protocol, which groups replicas into clusters. Each

cluster runs the PBFT consensus protocol, in parallel and independently.

28

Client

R2,1

R2,2

R2,3

PC2

ReplyLocal Request Local Replication

Client

R1,1

R1,2

R1,3

PC1

Global
Sharing

Local
Sharing

Cluster 1
C1

Cluster 2
C2

29

Local PBFT
Consensus on T1

Local PBFT
Consensus on T1

GeoBFT Takeaways

• To ensure common ordering → linear communication among the clusters is

required.

• Primary replica at each cluster sends a secure certificate to f+1 replicas of every

other cluster.

• Certificates guarantee common order for execution.

• If primary sends invalid certificates → will be detected as malicious.

30

GeoBFT Scalability

31

Permissioned Blockchain Through the

Looking Glass: Architectural and

Implementation Lessons Learned

Visit at: https://resilientdb.com/

*Proceedings of the 40th IEEE ICDCS 2020.

https://resilientdb.com/

Why Should You Chose ResilientDB?

1) Bitcoin and Ethereum offer low throughputs of 10 txns/s.

2) Existing Permissioned Blockchain Databases still have low

throughputs (20K txns/s).

3) Prior works blame BFT consensus as expensive.

4) System Design is mostly overlooked.

5) ResilientDB adopts well-researched database and system practices.

33

Dissecting Existing Permissioned Blockchains

1) Single-threaded Monolithic Design

2) Successive Phases of Consensus

3) Integrated Ordering and Execution

4) Strict Ordering

5) Off-Chain Memory Management

6) Expensive Cryptographic Practices

34

Can a well-crafted system based on a classical BFT
protocol outperform a modern protocol?

35

ResilientDB Architecture

HASHING

TOOLKIT

SIGNING

TOOLKIT

SECURE

LAYER

STORAGE LAYER

BLOCKCHAIN
METADATA

THREADS

BFT CONSENSUS

QUEUES

EXECUTION LAYER

NET WORK

ResilientDB Multi-Threaded Deep Pipeline

3737

Client

Requests

Prepare

& Commit

Input

Network

Message from

Clients and Replicas

Batch Creation

Worker

Checkpoint

Execute

Message to

Replicas and Clients

Output

Network

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

38

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

39

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

40

Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).

41

Insight 2: Optimal Batching Gains

More transactions batched together → increase in throughput

→reduced phases of consensus.

42

Insight 3: Memory Storage Gains

In-memory blockchain storage → reduces access cost.

43

Insight 4: Number of Clients

Too many clients → increases average latency.

44

ResilientDB: Hands On

Visit at: https://github.com/resilientdb/resilientdb

https://github.com/resilientdb/resilientdb

How to Run ResilientDB?

46

How to Run ResilientDB?

• Go to https://github.com/resilientdb/resilientdb and Fork it!

• Install Docker-CE and Docker-Compose (Links on git)

• Use the Script ”resilientDB-docker” as following:

./resilientDB-docker --clients=1 --replicas=4

./resilientDB-docker -d [default 4 replicas and 1 client]

• Result will be printed on STDOUT and stored in res.out file.

47

https://github.com/resilientdb/resilientdb

Docker CE

What is Docker?

• Run a distributed program on one machine

• Simulate with lightweight virtual machines

48

How to Run ResilientDB?

• Go to https://github.com/resilientdb/resilientdb and Fork it!

• Install Docker-CE and Docker-Compose (Links on git)

• Use the Script ”resilientDB-docker” as following:

./resilientDB-docker --clients=1 --replicas=4

./resilientDB-docker -d [default 4 replicas and 1 client]

• Result will be printed on STDOUT and stored in res.out file.

49

https://github.com/resilientdb/resilientdb

Resilient DB

./resilientDB-docker -d

• Remove old Containers

• Create new Containers

• Create IP address settings

• Install dependencies

• Compile Code

• Run binary files

• Gather the results

50

Resilient DB

• Throughput

• Transaction per second

• Average Latency

• The from client request to client reply

• Working Thread idleness

• The time that thread is waiting

• WT0: Consensus Messages

• WT1 and WT2: Batch Threads

• WT3: checkpointing Thread

• WT4: Execute Theread

51

Configuration Parameters to Play

• NODE_CNT Total number of replicas, minimum 4, that is, f=1.

• THREAD_CNT Total number of threads at primary (at least 5)

• CLIENT_NODE_CNT Total number of clients (at least 1).

• MAX_TXN_IN_FLIGHT Multiple of Batch Size

• DONE_TIMER Amount of time to run the system.

• BATCH_THREADS Number of threads at primary to batch client transactions.

• BATCH_SIZE Number of transactions in a batch (at least 10)

• TXN_PER_CHKPT Frequency at which garbage collection is done.

• USE_CRYPTO To switch on and off cryptographic signing of messages.

• CRYPTO_METHOD_ED25519 To use ED25519 based digital signatures.

• CRYPTO_METHOD_CMAC_AES To use CMAC + AES combination for authentication

52

PBFT: Practical Byzantine Fault Tolerance
Main Functions

• Client/client_main.cpp

• System/client_thread.cpp

• System/main.cpp

53

PBFT: Practical Byzantine Fault Tolerance
Process Messages

• Transport/message.cpp

• System/worker_thread.cpp

• System/worker_thread_pbft.cpp

• Worker Thread: Run function

• Worker Thread: Process function

54

PBFT Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare
O(n)

Prepare
O(n2)

Commit
O(n2)

ReplyClient
Request

55

PBFT: Practical Byzantine Fault Tolerance
Process Client Message

• System/worker_thread_pbft.cpp

• process_client_batch Function

• Create and Send Batch Request

• create_and_send_batchreq Function

• Create Transactions

• Create Digest

• BatchRequest Class

• Pre-Prepare Message

56

PBFT Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare
O(n)

Prepare
O(n2)

Commit
O(n2)

ReplyClient
Request

57

PBFT: Practical Byzantine Fault Tolerance
Process Batch Request (Prepare)

• System/worker_thread_pbft.cpp

• process_batch Function

• Create and Send Prepare Message

• Create Transactions

• Save Digest

• PBFTPrepare Class

• Prepare Message

58

PBFT Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine
Replica

Primary

T

Pre-Prepare
O(n)

Prepare
O(n2)

Commit
O(n2)

ReplyClient
Request

59

PBFT: Practical Byzantine Fault Tolerance
Process Prepare and Commit Messages(Prepare)

• System/worker_thread_pbft.cpp

• process_pbft_prepare Function

• Count Prepare Messages

• Create and Send commit Message

• PBFTCommit Message

• process_pbft_commit Function

• Count commit messages

• Create and Send execute Message

• ExecuteMessage Class

60

PBFT: Practical Byzantine Fault Tolerance
Process Execute Message

• System/worker_thread.cpp

• Internal Message

• process_execute Function

• Execute the Transactions in batch in order

• Create and send Client Response

• ClientResponse Class

61

PBFT: Practical Byzantine Fault Tolerance
Work Queue

• Lock Free queues

• All the messages are being stored in these queues

• System/work_queue.cpp

• Multiple queues for different Threads

• Dequeue and Enqueue Interfaces

• Enqueue in IOThread

• Dequeue in Worker Thread

62

PBFT: Practical Byzantine Fault Tolerance
IO Thread and Transport Layer

• Multiple Input Threads

• Multiple Output Threads

• System/io_thread.cpp

• Transport Layer: TCP Sockets

• Nano Message Library

• Transport/transport.cpp

63

Thank You

