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At the core of any Blockchain application is a 

Byzantine Fault-Tolerant (BFT) consensus protocol.
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Practical Byzantine Fault-Tolerance (PBFT)
[OSDI’99]

• First practical Byzantine Fault-Tolerant Protocol.

• Tolerates up to f failures in a system of 3f+1 replicas 

• Requires three phases of which two necessitate quadratic communication complexity.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.
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PBFT Uncivil Execution: Primary Failure 
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Speculative Byzantine Fault Tolerance (Zyzzyva)
[SOSP’07]

• Speculation to achieve consensus in a single phase.

• Under no failures, it only requires linear communication complexity.

• Requires good clients, for ensuring same order across the replicas.

• Clients need matching responses from all the 3f+1 replicas.

• Just one crash failure is sufficient to severely impact throughput. 

• Recently, proven unsafe! 
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Zyzzyva Civil Executions
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Zyzzyva under Failure of one Non-Primary Replica
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SBFT: A Scalable and Decentralized Trust Infrastructure
[DSN’19]

• A safe alternate to Zyzzyva. 

• Employs threshold signatures to linearize consensus → Splits each O(n2) phase of 

PBFT into two linear phases.

• Requires twin-paths→ fast-path and slow-path.

• Introduces notion of collectors and executors. 
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SBFT Civil Execution
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Client Request Sign-state
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Hotstuff: BFT Consensus in the Lens of Blockchain
[PODC’19]

• Splits each O(n2) phase of PBFT into two linear phases.

• Advocates leaderless consensus → Frequent primary replacement. 

• Employs threshold signatures to linearize consensus → enforces sequential processing.

• Two versions:

• Basic Hotstuff: Primary switched at the end of each consensus.

• Chained Hotstuff: Employs pipelining to ensure each phase run by a distinct primary.
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1) System consisting of n >> 3f+1. 

➢ Q/U [SOSP’05] expects 5f+1 replicas.

2) Use of trusted components to prevent primary equivocation.

➢AHL [SIGMOD’19]

Other Proposed Byzantine-Fault Tolerant Designs



Novel Byzantine Fault-Tolerant Protocols



Speculative Execution
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Proof-of-Execution (PoE)

Out-of-Order Message Processing

Three-phase Linear protocol

No dependence on clients or trusted component.

No reliance on a twin-path design.



PoE vs Other Protocols 
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Proof-of-Execution (PoE)
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PoE View Change Protocol
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PoE Scalability under Single Failure

19



Resilient Concurrency Control (RCC) Paradigm
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Democracy→ Give all the replicas the power to be the primary. 

Parallelism → Run multiple parallel instances of a BFT protocol.

Decentralization →Always there will be a set of ordered client requests.



RCC Defense

Why should BFT protocols rely on just one primary replica?

Malicious primary can throttle the system throughput.

Malicious primary requires replacemenat→ fall in throughput.
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Resilient Concurrency Control Paradigm
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RCC can employ several BFT protocols: PBFT, Zyzzyva, SBFT and PoE. 
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Colluding Primaries

Multiple malicious primaries can prevent liveness!

Solution → Optimistic Recovery through State Exchange.
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Scalability

Single Failure Experiments

26x



Global Scale Resilient Blockchain Fabric

• Traditional BFT protocols do not scale to geographically large distances.

• Blockchain requires decentralization → replicas can be far apart → expensive 

communication!

• The underlying BFT consensus protocol should be topology-aware.
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Proceedings of the VLDB Endowment 2020.



Vision Geo-Scale Byzantine Fault-Tolerance
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Each cluster runs PBFT to 
select, locally replicate, and 

certify a client request.

Primary at each cluster 
shares the certified client 

request with other clusters.

GeoBFT Protocol

Local Replication Inter-cluster Sharing Ordering and Execution

Order the certified
requests, execute them,
and inform local clients.

GeoBFT is a topology-aware protocol, which groups replicas into clusters. Each 

cluster runs the PBFT consensus protocol, in parallel and independently.
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GeoBFT Takeaways

• To ensure common ordering → linear communication among the clusters is 

required.

• Primary replica at each cluster sends a secure certificate to f+1 replicas of every 

other cluster.

• Certificates guarantee common order for execution.

• If primary sends invalid certificates → will be detected as malicious.
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GeoBFT Scalability
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Permissioned Blockchain Through the 

Looking Glass: Architectural and 

Implementation Lessons Learned

Visit at: https://resilientdb.com/

*Proceedings of the 40th IEEE ICDCS 2020.

https://resilientdb.com/


Why Should You Chose ResilientDB?

1) Bitcoin and Ethereum offer low throughputs of 10 txns/s.

2) Existing Permissioned Blockchain Databases still have low

throughputs (20K txns/s).

3) Prior works blame BFT consensus as expensive.

4) System Design is mostly overlooked.

5) ResilientDB adopts well-researched database and system practices.
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Dissecting Existing Permissioned Blockchains

1) Single-threaded Monolithic Design

2) Successive Phases of Consensus

3) Integrated Ordering and Execution

4) Strict Ordering

5) Off-Chain Memory Management

6) Expensive Cryptographic Practices
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Can a well-crafted system based on a classical BFT 
protocol outperform a modern protocol?
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ResilientDB Architecture
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ResilientDB Multi-Threaded Deep Pipeline
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Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).
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Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).
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Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).
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Insight 1: Multi-Threaded pipeline Gains

Parallelizing and Pipelining tasks across worker, execution (E) and batch-threads (B).
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Insight 2: Optimal Batching Gains

More transactions batched together → increase in throughput 

→reduced phases of consensus.
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Insight 3: Memory Storage Gains

In-memory blockchain storage → reduces access cost.
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Insight 4: Number of Clients

Too many clients → increases average latency.
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ResilientDB: Hands On

Visit at: https://github.com/resilientdb/resilientdb

https://github.com/resilientdb/resilientdb


How to Run ResilientDB?
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How to Run ResilientDB?

• Go to https://github.com/resilientdb/resilientdb and Fork it!

• Install Docker-CE and Docker-Compose (Links on git)

• Use the Script ”resilientDB-docker” as following:

./resilientDB-docker --clients=1 --replicas=4 

./resilientDB-docker -d [default 4 replicas and 1 client]

• Result will be printed on STDOUT and stored in res.out file.
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https://github.com/resilientdb/resilientdb


Docker CE

What is Docker?

• Run a distributed program on one machine 

• Simulate with lightweight virtual machines
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How to Run ResilientDB?
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https://github.com/resilientdb/resilientdb


Resilient DB

./resilientDB-docker -d

• Remove old Containers

• Create new Containers

• Create IP address settings

• Install dependencies

• Compile Code

• Run binary files

• Gather the results 
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Resilient DB

• Throughput 

• Transaction per second

• Average Latency

• The from client request to client reply

• Working Thread idleness

• The time that thread is waiting 

• WT0: Consensus Messages

• WT1 and WT2: Batch Threads

• WT3: checkpointing Thread

• WT4: Execute Theread
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Configuration Parameters to Play

• NODE_CNT Total number of replicas, minimum 4, that is, f=1.

• THREAD_CNT Total number of threads at primary (at least 5) 

• CLIENT_NODE_CNT Total number of clients (at least 1). 

• MAX_TXN_IN_FLIGHT Multiple of Batch Size 

• DONE_TIMER Amount of time to run the system. 

• BATCH_THREADS Number of threads at primary to batch client transactions. 

• BATCH_SIZE Number of transactions in a batch (at least 10) 

• TXN_PER_CHKPT Frequency at which garbage collection is done. 

• USE_CRYPTO To switch on and off cryptographic signing of messages. 

• CRYPTO_METHOD_ED25519 To use ED25519 based digital signatures.

• CRYPTO_METHOD_CMAC_AES To use CMAC + AES combination for authentication
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PBFT: Practical Byzantine Fault Tolerance
Main Functions

• Client/client_main.cpp

• System/client_thread.cpp

• System/main.cpp
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PBFT: Practical Byzantine Fault Tolerance
Process Messages

• Transport/message.cpp

• System/worker_thread.cpp

• System/worker_thread_pbft.cpp

• Worker Thread: Run function

• Worker Thread: Process function
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PBFT Failure-Free Flow
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PBFT: Practical Byzantine Fault Tolerance
Process Client Message

• System/worker_thread_pbft.cpp

• process_client_batch Function

• Create and Send Batch Request

• create_and_send_batchreq Function

• Create Transactions

• Create Digest

• BatchRequest Class

• Pre-Prepare Message
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PBFT Failure-Free Flow

Client

Replica 1

Replica 2

Byzantine 
Replica

Primary

T

Pre-Prepare 
O(n)

Prepare 
O(n2)

Commit 
O(n2)

ReplyClient 
Request

57



PBFT: Practical Byzantine Fault Tolerance
Process Batch Request (Prepare)

• System/worker_thread_pbft.cpp

• process_batch Function

• Create and Send Prepare Message

• Create Transactions

• Save Digest

• PBFTPrepare Class

• Prepare Message
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PBFT Failure-Free Flow
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PBFT: Practical Byzantine Fault Tolerance
Process Prepare and Commit Messages(Prepare)

• System/worker_thread_pbft.cpp

• process_pbft_prepare Function

• Count Prepare Messages

• Create and Send commit Message

• PBFTCommit Message

• process_pbft_commit Function

• Count commit messages 

• Create and Send execute Message

• ExecuteMessage Class
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PBFT: Practical Byzantine Fault Tolerance
Process Execute Message

• System/worker_thread.cpp

• Internal Message

• process_execute Function

• Execute the Transactions in batch in order

• Create and send Client Response

• ClientResponse Class
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PBFT: Practical Byzantine Fault Tolerance
Work Queue

• Lock Free queues

• All the messages are being stored in these queues

• System/work_queue.cpp

• Multiple queues for different Threads

• Dequeue and Enqueue Interfaces

• Enqueue in IOThread

• Dequeue in Worker Thread
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PBFT: Practical Byzantine Fault Tolerance
IO Thread and Transport Layer

• Multiple Input Threads

• Multiple Output Threads

• System/io_thread.cpp

• Transport Layer: TCP Sockets

• Nano Message Library

• Transport/transport.cpp

63



Thank You


